

AIRCARTRIDGE **TECHNOLOGY** ByDick Pepper (SDE) Henk Holsboer (AMI)

Overview

- Who are we & where are we based?
- Airmunition concept.
- Product range & benefits.
- Energy comparison.
- AirCartridge technology & kinematic model.
 - Methodology.
 - Trials.
 - Results & Validation.
- System Modelling.
- Conclusions.

Organisation

US Sales & Marketing AMNA, Norcross USA

Airmunition Industries SA Switzerland

Mission

To provide safe, realistic & cost effective

weapon training systems, using the patented

concept of compressed air as an energy source.

The Concept

Small Calibre

Product Range

Benefits

Cost Effective

- Each cartridge can be reloaded in excess of 500/2000 times.
- Environmentally Friendly
 - Uses only air.
 - Can be used indoors without a need for ventilation.
- Safe
 - No energetic materials are used.
 - Patented vent hole in the side of the chamber.
- Reliable
- Variable Velocity
 - For special applications, the muzzle velocity can be varied by varying the pressure.

Energy Comparison 9mm

	Pyrotechnic Cartridge	AirCartridge
Maximum Pressure	3200 (bar) 46,400 (psi)	250 (bar) 3,625 (psi)
Total Energy (J)	1840	9
Muzzle Energy (J)	580	2.5

AirCartridge Technology Objectives

- To allow a wider application of the technology.
- To assist production by identifying critical areas of the design.
- To reduce development time and cost of future products.

Methodology

- Produce a Kinematic Model of the AirCartridge.
- Conduct laboratory tests, to obtain pressure & time data within the AirCartridge, using both standard & non-standard components.
- Produce algorithms to predict the flow of air through the valves.
- Insert the data into the Kinematic Model.
- Validate the model.

Trial Programme

Build Standard Variations

- Piston (main) valve travel.
- Flow restriction from main to rear chamber.

Initial Charge Pressure

Pressures at 200 bar (2900 psi) & 100 bar (1450 psi).

Trials

- Determination of Spool Valve activation energy.
- Record pressure/time data.

Trial Results

Air Flow Algorithms

Model Results

Model Results

System Modeling

System Modeling

Model Conclusions

- A Kinematic Model has been developed which accurately represents the action of the AirCartridge, which allows us to:
 - Identify & quantify critical design features.
 - Develop new products more efficiently.
- This model can be extended to include the complete weapon system, further reducing development time and costs.

QUESTIONS?

